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SUMMARY

During an 18-month period, 30 nighttime observations of stratospheric

aerosols were made using a ground-based ruby lidar located near the

Pacific coast of central California (37.5 0 N, 122.2 0 W). Vertical profiles

of the lidar scattering ratio and the particulate backscattering coeffi-

cient were obtained by reference to a layer of assumed negligible particu-

late content. An aerosol layer centered near 21 km was clearly evident

in all observations, but its magnitude and vertical distribution varied

considerably throughout the observation period. A reduction of particu-

late backscattering in the 23- to 30-km layer during late January 1973

appears to have been associated with the sudden stratospheric warming

which occurred at that time.

Typically, a relative minimum in the ratio of particulate to molecu-

lar backscattering coefficients was observed near, but not necessarily

at, the local tropopause. The maximum, or peak. value of this ratio at

the ruby wavelength (X = 0.694 'pm) typically varied between 0.07 and

0.20. These values indicate a significant decrease in stratospheric par-

ticulate backscattering since the lidar observations made by several

groups in 1964-65, closely following the Agung volcanic eruption. By

using a model backscattering phase function, the lidar measurements were

converted to stratospheric particulate optical thicknesses, yielding
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values which varied between 0.002 and 0.005 (when converted to a wave-

length of 0.55 pm). These values are smaller by a factor of 5 to 12

than that obtained by searchlight measurements made in 1964-65. The de-

cline in particulate backscattering and optical thickness is shown to be

in accord with a time series of measurements made.by a number of other

methods, including twilight photometry, balloonborne particle counting,

and chemical and isotopic analysis of collected particles. Together the

results confirm that periodic strong volcanic eruptions have a major ef-

fect on the stratospheric aerosol.

During one observation, measurements were made at two wavelengths

(0.694 and 0.589 pm) by sequentially using both a ruby and a dye laser

transmitter. The observed wavelength dependence of particulate back-

scattering was in accord with that expected from previous indications of

the particle size distribution of the stratospheric aerosol.

On three occasions aircraft sampling flights were made over the

lidar site in connection with lidar observations. Comparative analysis

of the lidar and aircraft measurements is presented for two of these

overflights. For the first overflight, lidar- and aircraft-inferred am-

bient particulate mass concentrations at the 18.7-km level are shown to

agree by modeling the sampled particles as homogeneous spheres of 75 per-

cent sulfuric acid and 25 percent water, having the Deirmendjian haze H

size distribution. The model composition and size distribution are

shown to be in accord with chemical analysis of the sampled particles
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and several previous results. The second overflight revealed a region

of negligible particulate content near the tropopause (- 9 to 13 km).

This is in accord with the minimum in scattering ratio typically observed

in that region. Together the lidar/aircraft comparison experiments

provide support for the "matching method" of lidar analysis, which assumes

a layer of negligible particulate backscattering within the altitude

region over which the lidar signal is analyzed.

We conclude that lidar observations are valuable sources of informa-

tion on the stratospheric aerosol, and are of special value in extending

and complementing available in situ measurements. Without the necessity

of converting the raw optical data to physical parameters, the lidar ob-

servations reveal the presence, altitude-dependence, backscattering

strength, and variability (in space and time) of stratospheric aerosol

layers. In many cases this information alone is very useful, and lidar

measurements can provide it with a coverage in space and time that would

be extremely expensive to achieve with direct sensors. When, on the

other hand, data on such physical parameters as particle mass or number

density are required, the lidar data can still be of value, both in pro-

viding physical parameters by means of tested conversion factors, and

also in selecting optimum times and locations for using direct sensors.

Stratospheric lidar observations should be enhanced by the addition of

multiwavelength techniques and Raman scattering measurements of molecular

density profiles.

xi



Thus,. in addition to contributing to the data base used to establish

the synoptic variability of the stratospheric aerosol, the current study

provides information on many of the difficulties inherent in the lidar

technique. With greater understanding of these difficulties, the role

of the lidar in stratospheric observations becomes more well defined, and

continues to be a valuable one.
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1. INTRODUCTION

The presence of optically significant amounts of particulate material

in the stratosphere was deduced nearly a century ago on the basis of the

color of the twilight sky, together with the awesome demonstration by

the Krakotoa eruption in 1883 that volcanic ejecta could indeed be pro-

pelled into the stratosphere. Since the early twilight observations of

Gruner and Kleinert (1927), the presence of stratospheric aerosol layers

has been confirmed, and their properties studied, by a variety of direct

sampling and remote observation techniques. These techniques--which

include collection by impactors and filters, particle counting by balloon-

borne photoelectric detectors, rocket- and aircraft-borne sky photometry,

balloon-borne solar aureole photometry, as well as ground-based twilight

sky photometry and searchlight scattering measurements--have produced a

wealth of information and a rather extensive literature, which has been

summarized and reviewed by Grams and Fiocco (1967), Rosen (1969), Reiter

(1971), Cadle (1972)p and Castleman (1974), among others. In addition

to the field measurements, laboratory investigations, as for example by

Bigg et al. (1971), Farlow et al. (1973). and Friend et al. (1973), have

contributed supplementary information on the chemical composition and

formation mechanisms of stratospheric aerosols.



From these investigations a general picture has emerged of a broad

maximum in stratospheric particulate concentration (the so-called "Junge"

layer) centered at an altitude of approximately 20 km, with occasional

appearances of higher layers. The single most abundant constituent of

the particles is sulfate, existing primarily as sulfuric acid and ammonium

sulfate. The particles evidently form locally from sulfur-bearing gases

(e.g., sulfur dioxide and hydrogen sulfide) entering from the troposphere

through the tropical Hadley cell circulation. with major perturbations

from occasional volcanic activity (Castleman et al., 1973ab). Less

often, the layer may be enhanced by extraterrestrial material, for example

at times of meteoric influx.

During the past decade, the lidarY or laser radar, has been added

to the list of remote-sensing instruments that have proven useful in

studies of the stratospheric aerosol. (For a review of laser radar

applications in the upper atmosphere, see Kent and Wright, 1970.) In

applying the lidar technique to stratospheric studies, a pulsed laser

beam is projected vertically into the atmosphere, and the energy scattered

back by stratospheric gases and particles is measured as a function of

altitude. Differences between the observed return signal and that

expected from a purely gaseous atmosphere are indicative of the presence

of particulate matter. Since the pioneering observations by Fiocco and

Grams (1964) (see also Grams 1966; Grams and Fiocco 1967) and Collis and

Lidga (1966), this technique has been employed to observe the layered
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structure of the stratospheric aerosol from ground-based sites in

Massachusetts, Colorado, California, Alaska, Jamaica, Japan, Brazil,

Australia, the Soviet Union, and Israel (Fiocco and Grams 1966; Clemesha

et al., 1966; Kent et al.. 1967; Phillipowskyj et al., 1968; Schuster

1970; Clemesha and Rodrigues 1971; Bartusek et al., 1970; Ottway 1972;

Hirono et al., 1972; Zakharov et al., 1973; Cohen and Graber 1973).

In August and September of 1971, Fox et al. (1973) extended the

lidar observations of the stratosphere by using an airborne laser radar

system to obtain measurements on extensive flights over the Pacific and

Atlantic Oceans. In presenting their results, Fox et al. also summarize

a number of stratospheric lidar observations made prior to their investi-

gation. Taken together, the observations reveal a decreasing trend in

stratospheric particulate backscattering over the period 1964 to late

1971. This decline is shown to be in accord with other remote and in-

situ measurements, particularly the twilight photometry of Volz (1969, 1970,

1972), which had indicated a large increase in stratospheric aerosol con-

centration following the eruption of the volcano Agung on Bali in March

1963. As noted by Cronin (1971), Casteleman (1974), and others, volcanic

eruptions subsequent to the Agung event may have partially replenished

the Junge layer concentration, but evidently not enough to cancel this

general decline.

Interest in the composition and 'dynamics of the stratosphere has

recently been intensified by concern that the stratosphere could be
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significantly modified by the exhaust emissions of aircraft and other

aerospace vehicles, with possibly severe effects on the climate at the

earth's surface. This concern led to the formation in 1971 of a major

stratospheric research study, the Climatic Impact Assessment Program

(CIAP), funded by the U.S. Department of Transportation. In considering

the possibility of climatic change, the particulate phase of the strato-

sphere is of considerable interest, not only because of its direct

effect on the transfer of solar radiation, but also because of its possibly

important role in stratospheric photochemical processes, and its ability

to serve as a tracer of stratospheric transport. Therefore, CIAP has

funded a number of studies of the stratospheric aerosol, including three

that use lidar techniques.

This paper describes the results of one of these studies, conducted

at the Stanford Research Institute in Menlo Park, California (37.50 N,

122.20W), over the 18-month period from October 1972 to March 1974. The

objectives of the study were twofold: first, to provide a record, or

climatology, of the temporal and (vertical) spatial variability of

particulate material in the natural (unperturbed) stratosphere above

the lidar site; and second, to provide comparative data on the strato-

spheric aerosol by conducting coordinated observations employing the

lidar and other, direct sensors to make joint observations. Results of

this and other CIAP-sponsored investigations of the stratosphere will be

published in the extensive monograph, The Natural Stratosphere, to appear

in late 1974 or 1975.
4



2. INSTRUMENTATION AND DATA COLLECTION

(a) Lidar System

A schematic diagram of the laser radar system used in this study

is shown in Fig. 1. For descriptive purposes it may be conveniently

divided into transmitter and receiver portions. The characteristics of

these two portions of the system are summarized in Table 1. The dye

transmitter was used for only one of the observations reported herein.

LASER Beamsplitter

1. -Switched Ruby - Light Pulse into Atmosphere
2. Dye

TRIGGER

PHOTOMULTIPLIER RECEIVER
ITT-FW130 16 inch - - - - Light Backscattered from Atmosphere

DIAMETER

Dynode Anode

FILTER - 500 kHz

AMPLIFY REAL
TIME

DISPLAY

A/D CONVERTER
8 BIT, 4.8 MHz

PULSE TRANSFORMER STORAGE RING

2048 WORD, 16 BIT ° MINI-
COMPUTER MAGNETIC

AMPLIFY, DISCRIMINATE HP 2115 TAPE

16 CHANNEL A/D
HOUSEKEEPING DATA

COUNTER
4 BIT, 9.6 MHz

SA-2217-25

FIGURE 1 SCHEMATIC DIAGRAM OF STRATOSPHERIC LIDAR
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Table 1

LIDAR SYSTEM PARAMETERS

Equipment Parameters

Ruby transmitter

Wavelength 694.3 nm

Energy per pulse 1-2 Joules

Pulse duration < 30 ns (q-switched)

Pulse frequency 0.5 Hz (1 pulse every 2 seconds)

Beam diameter 15.2 cm (expanded)

Beam divergence 0.5 mrad (full angle)

Dye transmitter

Wavelength 589.0 nm

Energy per pulse 100-150 mJ
Pulse duration 300 ns

Pulse frequency 0.25 Hz (1 pulse every 4 seconds)

Beam diameter 12.7 cm

Beam divergence 0.5 mrad (full angle)

Receiver

Diameter 40.6 cm (Cassegrain)

Unobscured area 1070 cm2

Acceptance cone 2 mrad (full angle)

Filter bandwidth 1.0 nm

Filter transmission 50%

Separation from laser 7 m

Beam overlap height > 8 km

The ruby transmitter consisted of a high-energy ruby laser, Korad

Kl5Q, q-switched with a passive dye cell. The laser produced 1- to 2-

joule pulses of 30-ns duration at a rate of 0.5 Hz or less. The 1.4 cm

diameter beam from the ruby rod was expanded to 15.2 cm and at the same

time collimated to 0.5-mrad divergence before being transmitted vertically

into the atmosphere. A portion of the beam was diverted into a detector
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for supplying a master trigger pulse to the rest of the system. In

addition to starting the data acquisition cycle, this pulse served as

the timing event for range determination.

When the dye laser was used in place of the ruby laser, the energy

output was 100 to 150 mJ per pulse at the wavelength of -589 nm. Other

characteristics of the dye system are summarized in Table 1.

Light backscattered from the atmosphere was collected by a 40.6

cm Cassegrainian telescope and focused (through a 1-nm interference

filter for background rejection) onto an ITT-FW130 photomultiplier tube

(PMT). The receiving telescope was displaced horizontally roughly 7 m

from the vertical axis of the transmitted laser beam. This displacement

eliminated problems due to fluoresence of the ruby rod (making a shutter

unnecessary), but did make the convergence of the transmitting and

receiving beams more difficult. It also meant that full convergence

could not be achieved below 10 km if convergence were to be maintained at

all higher altitudes with an optimally narrow receiver beamwidth.

Two outputs were taken from the PMT. The signal from the last

dynode was fed through a pulse transformer into a three-stage amplifier

and discriminator, and then into a 4-bit counter sampled at 9.6 MHz.

Two 4-bit counter words were combined in parallel and stored in one half

of the 16-bit word of the storage ring at a 4.8-MHz rate.

Simultaneously, the anode signal of the PMT was fed through a

500-KHz filter into a high-linearity amplifier and then into an 8-bit

7



analog-to-digital converter. (Logarithmic amplifiers were not consistent

with the required 1 percent accuracy.) The output of the converter was

then clocked into the ring at the 4.8-MHz rate. The frequency rolloff

of the filter was consistent with the range resolution (0.25 to 0.33 km)

desired. The counter signal was useful at high altitudes where the

photon arrival rate was low enough that the individual PMT pulses were

not run together. At lower altitudes where the pulses could not be

resolved individually, the signal was strong enough that the analog signal

could be accurately digitized.

The sampling rate of 4.8 MHz gave 32 samples per kilometer (65 per

kilometer for the counter), and the 2048-word storage ring could accommodate

64 km of data. After the ring had been filled, it was read into an HP

2115 minicomputer along with relevant housekeeping data, and from there

was put in packed form on 12.7-cm magnetic tape for later analysis. The

data were also displayed in real time to make certain the system was

operating correctly.

Two major changes were implemented in the system during the measure-

ment series described herein. In mid-December 1972 a new ruby rod was

installed in the laser, allowing the pulse repetition rate to be increased

and also giving more energy per pulse. In mid-January 1973 the receiver

optical system was changed from focusing the sky onto the PMT face to

focusing the telescope aperture onto the PMT. This change eliminated the

problem of large-scale systematic errors due to irregularities in the

8



photo-cathode sensitivity that had prohibited most earlier runs from

being useful below 20 km.

(b) Treatment of data profiles

The first stage in data analysis was done on an SDS-930 computer.

The tape was unpacked, pulse by pulse, and the return signal from each

laser pulse was examined to ascertain that the energy in the pulse was

within certain bounds and that double-pulsing did not occur. Since the

passive-dye q-switch was not 100 percent effective in generating only

a single pulse per flash, it was necessary to screen the transmitted

pulses by computer to eliminate multiple pulses. The effect of multiple

pulsing was sufficiently obvious that all multiple pulses could be

eliminated by demanding that the shape of the backscatter profile be

within certain broad bounds that were programmed into the computer. The

return signals from all acceptable pulses were summed together in 0.25-km

range bins, then range-corrected, and written on another tape for the

final analysis stage.

The linearity of the system was initially established and then

periodically checked by summing all low-power pulses and all high-power

pulses and making certain that the range-dependence of the return signal

was identical for the two power levels. This procedure assured that

the receiver system was linear and that there were no power-dependent

effects in the transmitter. A further check was provided by.noting the

consistency between the analog return signal and the counter signal at

9,



high altitudes where the counter was free of pulse-pair resolution

difficulties.

The exponential decrease in atmospheric density with height, together

2
with the 1/R geometrical dependence of the received lidar power, produces

an extremely rapid decrease in PMT output signal with increasing time

after pulse transmission. This rapid change in photomultiplier output

limits the altitude range over which the linear anode signal can be

accurately digitized into 8-bit words. In several previous lidar systems

(see,. e.g., Schuster 1970; Fox et al., 1973; Spinhirne et al., 1973), this

digitization problem was countered by using a gain-switching amplifier

between the PMT and the analog-to-digital converter. A gain-switching

amplifier was not used in the present study because of problems associated

with matching the signal before and after the gain-switching transient.

For the early observations, which were confined to the altitude range

of 13 to 30 kmn, this did not present a problem, because the signal dynamic

range could be adequately spanned by the combination of an 8-bit word

and the photon-counting channel. However, observations made after May

1973 extended down to altitudes of 10 km and frequently lower, and the

dynamic range of the PMT output exceeded that of the data acquisition

system, which was originally constructed for higher altitude observations.

The dynamic range problem was circumvented in the observations made

after May 1973 by sequentially operating the lidar in two modes of differ-

ent sensitivity. In the low-sensitivity mode, a portion of the receiver

10



telescope aperture was covered and PMT anode signals were accurately

digitized in a low-altitude range. The data profile from the counter

on the last PMT dynode (which is valid for all altitudes above saturation)

was then multiplied by the constant (the relative anode/dynode system

calibration) that gave the best (least-square) fit between the anode and

dynode profiles in the common altitude region where both profiles were

valid. Thus a composite low-sensitivity data profile was constructed,

consisting of the digitized anode profile at the lowest altitudes, the

average of the anode and counter profiles in the altitude region of

mutual validity, and the counter profile above that region. This com-

posite profile is valid (i.e., contains no systematic error) for all

altitudes, but of course has increasingly large random photon-counting

error at high altitudes due to the reduced receiver area.

Therefore the lidar was also operated in a high-sensitivity mode,

with the receiver unobscured, to acquire a composite profile, valid

over a higher altitude range, in exactly the same manner. The system

was alternately operated in low- and high-sensitivity modes, each for

periods of approximately 30 minutes or 400 shots. This alternation

procedure was followed so that changes in atmospheric structure on the

time scale of one-half to several hours would not be obscured. If no

such changes were evident in the data, a "grand composite" profile,

representative of the complete period of observation, was then

11



constructed from the low- and high-sensitivity profiles by fitting them

together in the altitude region where both were valid.

The individual anode and counter data profiles for each sensitivity

mode were accumulated by the SDS-930 computer as described above. All

profile-matching was then accomplished on a CDC 6400 computer, using a

linear least-square fitting routine.

12



3. METHOD OF DATA ANALYSIS

It has become standard practice in most stratospheric lidar inves-

tigations to use the "scattering ratio" R as the fundamental form for

expressing measurement data. The scattering ratio is defined as

f (z) f (z) f (z)
m + p = 1 + p , (1)

R(z)
f (z) f (z)

m m

where f (z) and f (z) are, respectively, the elastic volume backscattering
m p

coefficients of the molecular (or gaseous) and particulate phases of the

atmosphere, both measured at altitude z. Expressing the data as a ratio

of backscattering coefficients permits them to be presented in a standard

format without making any assumptions as to the nature of the particulate

matter. Thus the observation of scattering ratios greater than unity in

an atmospheric region indicates the presence of particulate matter, and

gives its backscattering strength relative to that of local gases, but

does not provide more specific information on the nature of the particles.

To convert from the volume backscattering coefficient to such physical

parameters as particle number or mass requires additional information

on the refractive index, size distribution, and shape of the particles.

(a) Computation of scattering ratios and particulate

backscattering coefficients

In the present study, profiles of the scattering ratio R(z) were

obtained from the lidar signal profiles in the following manner, as

13



illustrated in Fig. 2 for an actual observation. The measured range-

corrected lidar signal profile S(z), given by

S(z) = K[f (z) + f (z)] q(z) (2)
m p

was divided by the computed "molecular" signal profile M(z), given by

M(z) = Kf (z) q (z) (3)
m

thus yielding the ratio

f (z) + f (z)
S(z) m p , (4)

R(z)
M(z) f (z)

m

in agreement with Eq. (1). In eqs. (2) and (3), q2(z) is the two-way

optical transmission between altitudes z and z (where z is the lowest
1 1

altitude for which the lidar signal is analyzed), and K is a factor that

includes the total transmitted energy, the two-way transmission between

the lidar and altitude and zl, and also the lidar system calibration

constant. In computing M(z), f (z) was obtained from a radiosonde-measured
m

2
molecular density profile, and q (z) was obtained from a stratospheric

extinction model [see Section 4.(c)]. However, because the transmission

through low-level haze and cirrus varied from observation to observation,

and also because (for this reason) we did not calibrate the lidar, the

constant K was unknown for any given observation. K was therefore deter-

mined by the "matching method," which was first used by Fiocco and Grams

14



(a) "MATCHING" OF (b) VERTICAL PROFILE OF (c) VERTICAL PROFILE OF PARTIC-
MEASURED AND COM- SCATTERING RATIO, R(z) ULATE BACKSCATTERING

PUTED BACKSCATTER COEFFICIENT, fp(z)
PROFILES

30 I I I I I I I I I

19 JAN 73

MEASURED
E 25 - -

RETURN

u-' 20

I-I

- _COMPUTED

MOLECULAR
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(1964) and which has been adopted (in varying forms) in most subsequent

stratospheric lidar studies.

The matching method of data analysis rests upon the fundamental

assumption that, at some level z within the altitude region spanned by

the lidar signal profile, the particulate content is nil or negligible.

Clearly, if such a "clean level" exists, it must have scattering ratio

R(z ) = 1. Furthermore, this ratio must be the minimum of all ratios
o

in the altitude range analyzed. On this assumption, K may be determined

by first assigning it an arbitrary value (e.g., K = 1), computing the

scattering ratio profile using Eq. (4), and then readjusting K so that

the statistically significant minimum value, R(z ), is unity. In other

words, the measured and computed profiles, S(z) and M(z), are "matched"

together at the level(s) where their ratio is a minimum, as shown in

Fig. 2a. The profile of scattering ratio thus obtained is shown in

Fig. 2b.

Given the scattering ratio profile, the profile of particulate

backscattering coefficient is readily computed from

f (z) = [R(z) - 1] f (z) , (5)P m

as shown in Fig. 2c. [The dashed line is drawn at a constant mixing

ratio of 0.01 f (z).] Again, in the present work the molecular back-m

scattering coefficient was obtained from a current radiosonde density

profile using
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f (z) = C (1800) N (z) , (6)
m R m

0° -28 2
where C R(180) = 2.114 X 10 cm is the Rayleigh backscattering cross

section of an average air molecule at the ruby wavelength (X = 694.3 nm),

and N (z) is the molecular number density at height z. The importance of
m

using a measured profile of molecular density, rather than a standard

profile, has been discussed in some detail by Russell et al. (1973a).

This importance results from the fact that at certain levels (especially

near the tropopause) on any given night the actual density profile may

differ from the standard by several percent or more, and use of an

erroneous density profile results in significant distortions in lidar-

derived profiles of scattering ratio and particulate backscattering

coefficient.

(b) Errors

The error bars shown in Fig. 2 result from three sources of uncer-

tainty: (1) random counting errors in the lidar signal S(z); (2) possible

relative errors (between two stratospheric altitudes) in the radiosonde

measured density profile N (z); and (3) possible differences between

the actual stratospheric transmission and the model profile q(z). The

signal counting error was maintained at two percent or less by summing

together 0.25-km altitude bins at the higher altitudes. In accordance

with Hoxit and Henry (1973) and Lenhard (1973), we estimated the probable

relative radiosonde density error to be one percent. The probable error

in the model two-way transmission q2(z) was also estimated at one percent
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[see further discussion in Section 4.(c)]. All stated errors are lu

(i.e., one standard deviation or standard error). They were combined

according to the error-propagation analysis of Viezee et al., 1973a,

(see also Collis et al., 1973; Russell et al., 1973a) to give the error

bars of ± la that are shown in Fig. 2.

It is emphasized that the error bars shown in Fig. 2 (and subsequent

figures) do not include possible errors associated with the matching

method assumption that the lidar profile includes a level with negligible

particulate content. If, indeed, the assumed "clean" level in fact

contains nonnegligible particulate material, then an error is introduced

into the derived profiles. Although the magnitude of this error is

difficult to estimate, its sign is always known. That is, if the assumed

"clean" level actually contains a significant amount of particulate

material, then the derived profiles of R(z) and f (z) will be too small.m

Thus the matching method can lead to an underestimate of particulate

content, but it cannot lead to an overestimate.
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4. RESULTS

In the present study, successful lidar observations were made at

Menlo Park, California (37.50 N, 122.20W) on 30 dates, as listed in

Table 2. All observations were made at night to reduce background noise

from skylight. Observations could not be made if a layer of clouds

(other than thin cirrus) was present, and cloud occurrence thus fre-

quently influenced the choice of observation dates. Occasionally,

observations were made to coincide with concurrent direct sampling

measurements [see Section 4(e)].

(a) Profiles of scattering ratio and particulate

backscattering coefficient

Profiles of scattering ratio R(z) and particulate backscattering

coefficient f (z) obtained in each of the observations are shown in
p

Figs. 3 and 4. The presence in all observations of a maximum in scatter-

ing ratio between the altitudes of 19 and 25 km confirms the existence

of the Junge aerosol layer on all observation dates. The maximum value

of the "backscattering mixing ratio" or "scattering excess:" R(z)-l,

varies between 7 percent and 22 percent over the observation period, or

by about a factor of three. These values are somewhat larger than

those measured by the dye lidar (% A 585 nm) of Fox et al. (1973), but

agree well with more recent values obtained by the ruby lidars'of other

CIAP investigators (Dynatrend 1973; Schuster et al., 1973; Melfi et al.,
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Table 2

LIDAR OBSERVATIONS MADE IN THIS STUDY

Altitude

Range Wavelength Number of

Date (km) (nm) shots

23 Oct 72 18.5-30.0 694.3 1236

28 Nov 72 20.0-30.0 694.3 1083

30 Nov 72 15.0-27.0 694.3 1136

11 Dec 72 19.0-29.0 694.3 970

4 Jan 73 20.0-30.0 694.3 1633

19 Jan 73 13.0-30.0 694.3 619

22 Jan 73 16.0-30.0 694.3 699

15 Feb 73 16.0-30.0 694.3 398

13 Mar 73 15.0-30.0 694.3 714

22 Mar 73 13.0-30.0 694.3 958

27 Mar 73 12.0-30.0 694.3 1332

2 Apr 73 13.5-30.0 694.3 1639

10 Apr 73 13.0-30.0 694.3 1669

15 May 73 12.5-30.0 694.3 1040

589 792

11 Jan 73 10.0-30.0 694.3 473

18 Jun 73 10.0-30.0 694.3 1522

5 Jul 73 10.0-30.0 694.3 315

17 Jul 73 10.0-30.0 694.3 681

23 Jul 73 10.0-30.0 694.3 1754

24 Jul 73 10.0-30.0 694.3 1700

26 Jul 73t 10.0-30.0 694.3 1377

9 Aug 73 10.0-30.0 694.3 854

23 Aug 73 10.0-30.0 694.3 1436

11 Sep 73 10.0-30.0 694.3 1065

2 Oct 73 9.0-30.0 694.3 285

9 Oct 73 7.5-30.0 694.3 1817

27 Nov 73 7.7-30.0 694.3 2501

21 Jan 74* 8.0-30.0 694.3 4412

8 Mar 74 8.0-30.0 694.3 1862

18 Mar 74§ 7.0-30.0 694.3 1526

If an observation extended through midnight, the

date listed is that of the evening, rather than

the morning.

tWB-57F overflight made on morning prior to the

observation.

Corvair 990 overflight made concurrent with this

observation.

*CU-2 overflight made concurrent with this obser-

vation.

20



25

20

23OCT 72 28NOV72 30NOV 72 11DEC 72

30

S25

20

15

4 JAN 73 19 JAN 73 22 JAN 73 15 FEB 73

1 0 I i . . .

0.90 1.00 1.10 1.20 0.90 1.00 1.10 1.20 0.90 1.00 1.10 1.20 0.90 1.00 1.10 1.20 1.30

SCATTERING RATIO - R(z) SA-2217-18
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1973, Fernald, et al., 1973). The relationship of the current series

of measurements to previous measurements made by a variety of techniques

is discussed more fully in Section 5.

As can be seen in Figs. 3 and 4, the variability in particulate

backscattering is much greater above and below the main Junge layer

than within it. In particular, the region between the major peak and

30 km is frequently seen to change from a clean condition (R e 1) to

one where the scattering ratio is nearly as large as in the major peak.

At times, in fact, the backscattering mixing ratio, R(z)-l, appears to

be constant above the major peak, and this can also be seen in Fig. 4

by comparing the backscattering profiles with the darkened line of con-

stant mixing ratio.

(b) Relation to winds and sudden stratospheric warming

To facilitate analysis of the time variability of particulate

backscattering in various altitude regions, Fig. 5 shows time series

of the particulate backscattering coefficient f (z) vertically averaged
p

over four individual layers of 2.5-km thickness. Also shown are values

of the layer-averaged zonal component of the local wind (obtained by

rawinsondes launched at Point Mugu, California) to permit inspection

for any clear correspondence between zonal transport and particulate
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content. In the 20.0 to 22.5-km layer, which always includes at least

part of the major peak, no such obvious correspondence is seen. In

general, no clear correspondence is evident in any of the other layers

either, with the exception of the period between November 1972 and

March 1973 when an apparent correspondence is rather obvious in the 22.5

to 25.0 and 25.0 to 27.5-km layers. Specifically, the sudden decrease

in the particulate backscattering coefficient in January 1973 was accom-

panied by a reversal of wind direction from westerly to easterly. Sub-

sequently, the backscattering coefficient returned to its previous value,

and this return was accompanied by a return of the winds to westerly.

Similar behavior is suggested in the 27.5 to 30.0-km layer, but the

larger relative errors in measured particulate backscattering coefficient

make the comparison inconclusive.

This interesting coincidence between wind and particulate behavior

occurred at the time of a sudden stratospheric warming (Quiroz 1973).

The reason for the apparent correspondence is not understood at the

present time. A possible reason is simply the change in direction of

advection. However, it should be noted that a similar reduction in

particulate content did not occur at the time of the springtime wind

reversal, and thus possible differences in sources of winter and

In this report and in all previous reports, comparisons shown between

lidar data and stratospheric wind data are based on analyses performed

under SRI-sponsored research. The comparisons are illustrated and

described to aid the interpretation of the lidar observations.
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summer easterly flows should be considered, or, alternatively, still

other mechanisms. A subsidence of cleaner air from above is a possible

mechanism that bears further consideration. Alternatively, temperature

effects on particle sublimation or evaporation, or on photochemical

reaction processes, may be significant factors. The present lack of

understanding of the chemistry and thermodynamics of stratospheric aerosol

formation and removal makes these possibilities difficult to assess (see

also Section 5), but a more careful inspection of this incident, using

local temperature and radiance data, is probably warranted. (Note that

the comparison data shown in Fig. 5 are limited in space and time, because

the Point Mugu wind data were obtained more than 320 km SSE of the lidar

site, and during daylight, while the lidar data were collected at night.)

The lack of any pronounced effect in the 20.0 to 22.5-km layer may be

due to a weakening of the sudden warming with decreasing altitude, or may

be associated with the more persistent spatial and temporal quality of

the major Junge layer.

Two qualifications of the data shown in Fig. 5 should be appreci-

ated at this point. First of all, lines drawn between data points are

drawn only to aid the eye, and not to imply that backscattering co-

efficients (or winds) necessarily fell on the lines at times between the

observation dates. This is especially true after November 1973, when

observations were scheduled less frequently to permit more concentration

on comparative experiments [see also Section 4(e)].
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The second reservation concerns the overall increasing trend in

the plotted particulate backscattering coefficients in the 20.0 to 22.5-km

layer between October 1972 and June 1973. During this period, the lower

bound of the analyzed lidar profiles was gradually being extended down-

ward, from approximately 20 km to 10 km or lower (see Figs. 3 and 4).

Thus, generally speaking, the earlier the observation date, the greater

was the probability of a significant amount of particulate material

actually being present at the "clean" level assumed for normalization of

the scattering ratios. As discussed in Section 3, when the matching

method of analysis is employed, the presence of particulate material at

the assumed "clean" level leads to an underestimate of particulate back-

scattering at all levels. Thus it is likely that the apparent increasing

trend in f (20.0 to 22.5 km) in the early data is an artifact of the
p

analysis, rather than an actual stratospheric occurrence. However, this

reservation regarding the October 1972 - June 1973 trend does not invali-

date the above discussion regarding short-term changes in f near the
p

time of the sudden stratospheric warming. Specifically, the lidar pro-

file obtained on January 1973, at the time of minimum f (22.5 to 27.5 km),

was exceptional in extending down to 13 km, and thus is more likely than

the surrounding observations to have included an actual clean layer. In

addition, the shape of the scattering ratio profiles on 19 and 22 January

1973 differs significantly from that of most other profiles, with the
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peak being lower in altitude and narrower. These shape features are

independent of the amount of particulate material at the assumed clean

level.

(c) Particulate Optical Depths

The profiles of particulate backscattering coefficient f (z)
p

shown in Fig. 4 can be converted to profiles of particulate extinction

coefficient p (z) by using the relation

4rr
( z) = ) fp(z), (7)

where P(r)/4r is the backscattering phase function (per steradian) of the

polydispersion of aerosol particles at altitude z. Without measurements

of P(rr) for actual stratospheric aerosols, P(r) may be computed by using

an optical model that is consistent with current experimental measurements

of particle size distribution. shape, and refractive index. To indicate

the range of results that is possible for a number of selected aerosol

characteristics, Table 3 lists values of various light-scattering param-

eters that were computed using Mie scattering theory (which is valid

provided that the particles are homogeneous spheres). The values of

P(n)/4ir listed in Table 3 vary by about a factor of five (0.011 to 0.049),

but it must be emphasized that only a subset of the listed particle size

distributions and refractive indices may be consistent with current

experimental data on particle size, composition. and the like.
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!.Ible 3

LIGHlf-SCATTERING AND OTHER PROPERTIES COMPUTED FOR SELECTED

AEROSOL SIZE DISTRIBUTIONS AND REFRACTIVE INDICES

Size N NR/N N Refractive p p p - P

Distribution (cm
- 3

) I = 0. 15 m R = 0.25 1m .25 (cm
3 

y 10-14) Inde m 3 1
- 7  

P(n)/4n (m-sr cm
3  

10
- 9 )  

(g em
- 3

) (g 1
- 14 ) 

(m-srg-cm3 x 104 1

Dei rmendj in 100 0.423 0.125 3.38 :. 14 1.33a 0.988 0.01095 1.08 1.5 4.73 2.29
Haze I 1.

4 0
b 1.36 0.01282 1.75 3.69

1.41 1.41
d  

0.0131
d  

1.86
d  

3.94
d

1.42 1.47d 0.0134
d  

1.97
d  

4.17

1.45
b  

1.63 0.01431 2.33 4.92

1.54
a  

2.07 0.01847 3.81 8.09

1.42 1.47 0.0134
d  

1.97
d  

1.63 5.12 3.84
Deirmendjian 100 0.474 0.236 2.01 11.7 1.33

a  
3.95 0.01002 3.96 1.5 17.55 2.26

Haze . 1.40
b  

4.47 0.01605 7.17 4.09

1.41 4.52
d  

0.0 1 7 7 7

d  
8.03

d  
4.58

d

1.
4 5
b 4.73 0.02465 11.66 6.64

rl r2

(m) (m)

0.04 10.0 2.5 :1.59 1.98 1.5
c  

0.290 0.049 1.39 1.5 4.68

3.0 4.63 0.444 1.
5
c 0.101 0.039 0.390 1.5 5.86

3.5 5.98 0.176 1.5
c  

0.407 0.034 0.140 1.5 5.30

4.0 7.72 0.107 1.
5
c 0.0185 0.035 0.652 1.5 4.06

0.08 10.0 2.5 3.59 10.9 1.5
c  

1.63 0.049 7.80 1.5 4.77

3.0 4.63 3.10 1.5
c  

0.797 0.038 3.02 1.5 6.49

3.5 5.98 1.37 1.5
c  

0.448 0.032 1.45 1.5 7.06

4.0 7.72 0.851 1.5
c  

0.279 0.031 0.859 1.5 5.67

0.04 3.0 2.5 3.59 i.03 1.5
C  

0.262 0.045 1.19 1.5 7.70

3.0 41.63 0.347 1.5
c  

0.0977 0.035 0.369 1.5 7.07

3.5 5.98 0.166 1
.5c 0.0404 0.034 0.137 1.5 5.50

4.0 7.72 0.106 1.
5
c 0.0184 0.035 0.0648 1.5 4.08

0.08 3.0 2.5 3.59 5.50 1.
5
c 1.47 0.045 6.66 1.5 8.07

3.0 4. 63 2.32 1.5
c  

0.772 0.037 2.84 1.5 8.16

3.5 5.98 1.26 1.5
c  

0.445 0.032 1.42 1.5 7.51

4.0 7.72 0.837 
1 . 5

c 0.278 0.030 0.855 1.5 6.81

Notes: n(r) dr number of particles per unit volume with radii between r and r + dr. a
Mie scattering results taken from Deirmendjian (1969) [X = 700 ns].

N
R 

= n(r) dr number of particles, with radii larger than R. blic scattering results computed in this laboratory [ = 700 nm].

S 1/N 4/3 n1 r3 n(r)dr r mean volume per particle. Mie scattering results taken from McCormick, et al. (1968) r\ = 694.3 nm].

-Obtained by interpolation of values for 1.40, 1.45 refractive index.
N - N - number of particles of all sixes. m i n -= mean mass per particle.

For other synmbol definitions see Section 4 of text.



A model value from Table 3 that we adopt for the present discussion

is

P(r)/47 = 0.0132, (8)

which is obtained for the purely real refractive index m = 1.42 and the

Deirmedjian (1969) haze H size distribution. This refractive index corre-

sponds to a particle composition of 75 percent sulfuric acid and 25 per-

cent water (by mass). This particle composition and this size distri-

bution are consistent with a number of recent experimental results, as is

discussed more fully in Section 4(e). By using Eqs. (7) and (8), we

converted the particulate backscattering coefficient profiles of Fig. 4

to profiles of particulate extinction coefficient P . From these profiles,
P

values of the integrated particulate optical thickness, given by

z
3

AT (z 2 z3 =f p(z) dz , (9)

z
2

were then computed for a number of layers (z2 , z3). Selected results

are shown in Fig. 6.

For the upper layers (i.e., lower curves) shown in Fig. 6, the

particulate optical thickness shows quite a bit of time variability,

including the sudden decline during the January 1973 stratospheric

warming, which was discussed in Section 4(b). Values integrated upward

through lower layers, including the major peak, show much less variability,

especially when the probable artificiality of the upward trend between

November 1972 and June 1973 is considered [see Section 4(b)]. On the

whole, it is difficult to see any generally increasing or decreasing
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trend in the particulate optical thickness data. Similarly, as noted

by Reiter (1971) in summarizing previous data, there does not appear to

be any regular seasonal pattern to the time variability.

For the phase function of Eq. (8), our derived values of particulate

optical depth in the 12- to 25-km layer fall in the range

-3
AT (12, 25) = 1.6 to 4 X 10 . ( = 693 im, 1973-74 lidar)

-l
Assuming a - wavelength-dependence [cf. Elterman, 1968, Elterman et al.,

1973; Deirmendjian, 1972; and Section 4(d)], these may be converted to

-3
AT (12, 25) = 2 to 5 X 10 ( = 550 nm, 1973-74 lidar)
p

For comparison, Elterman's model (1968), based on searchlight measure-

ments made in 1964 and 1965 and the phase function of Reeger and

Seidentopf (1946) gives

-2
AT (12, 25) = 2.4 10 . (X = 550 nm, 1964-5 searchlight)

More recent searchlight measurements, made in late 1970 (Elterman et al.,

1973), give

-2
AT (12, 25) = 2.0 X 10 . ( = 550 nm, 1970 searchlight)

Thus our present determination of stratospheric particulate optical

thickness is smaller by a factor of 5 to 12 than the 1964-65 searchlight

determination, and smaller by a factor of 4 to 10 than the 1970 search-

light determination. The implied temporal decline in stratospheric
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turbidity, and other possible differences between the lidar and search-

light measurements, are discussed in Section 5.

It is emphazised that the optical thicknesses shown in Fig. 6

are based on the assumed backscatter phase function given in Eq. (8).

Choice of a different phase function [e.g., from Table 3, or the value

P(7r)/4rr = 0.0143 of Reeger and Seidentopf (1946)] would change all of

the derived values according to Eq. (7). For example, if the stratospheric

particles are shown to be predominantly irregular plates, rather than

spheres, then P(rr) should probably be substantially reduced, (Holland

and Gagne 1970), thus substantially increasing all inferred optical

thicknesses. A similar result would apply if the particles are shown

to be absorptive at the lidar wavelength (i.e., have a nonzero imaginary

refractive index). Nevertheless, any phase function considered for use

should be consistent with applicable recent measurements of the optical,

chemical, and physical properties of the stratospheric aerosol. This

requirement greatly restricts the choice of possible backscatter phase

functions, and is discussed more fully in Sections 4(e) and 5.

The above lidar-derived values of AT give a two-way particulate

optical transmission at the ruby wavelength of

q (30 kinm) = exp [-2A (10, 30) = 0.997 to 0.990,

assuming a lower profile-analysis bound of 10 km. The values will vary

by several tenths of a percent depending on the date of the lidar obser-

vation and the assumed (realistic) value of P(r). However, for the
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2
present range of observed lidar scattering ratios, q (z) will always differ

from unity by less than our observational accuracy (for scattering ratios)

of approximately two percent. Therefore, in deriving scattering ratio

profiles (cf., Section 3), we have chosen to adopt a model of unit

2
particulate transmission (i.e., q (z) = 1) rather than adopt some other

p

value (e.g., 0.992) that implies an accuracy in determining stratospheric

particulate extinction that cannot presently be justified. For purposes

2
of comparison, the Elterman (1968) model value for q (30 km) with a lower

p

analysis bound of 10 km is 0.947. As can be seen from Eqs. (3) and (4),

use of this value would change some of our present results by more than

two standard errors. An example of such a change has been given by

Russell et al., (1973a).

In computing the Rayleigh scattering and ozone absorption components

of the two-way transmission q 2(z), we have used the model profiles given

by Elterman (1968). As shown by Russel et al., (1973a), extremely large

changes in atmospheric density and ozone concentration are required to

introduce significant error into the resulting value of q2(z). However,

because of the uncertainty in P(1) and the variability in stratospheric

particulate content, we have adopted a value of 1 percent as the estimated

2 2
uncertainty in q (z), and thus also in q (z).

p

(d) Sequential ruby and dye lidar observations

On the night of 15-16 May 1973, observations were made between 2203

and 2258 PDT using the ruby laser (% = 694.3 nm) transmitter of the lidar

system and shortly thereafter, between 0130 and 0419 PDT, using the
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dye laser (X = 589 nm) transmitter. (Add seven hours to PDT to obtain GMT.)

The results are shown in Fig. 7. As can be seen from Fig. 7(a), the obser-

vations at both wavelengths reveal a scattering ratio profile of similar

shape; however, the values at the shorter dye wavelength fall consistently

-4
below those at the ruby wavelength. This is in accord with the X depen-

-aC
dence of molecular (Rayleigh) backscattering and the expected weaker X

dependence of particulate backscattering [typically observed values are

a = 0 to 2; for example Elterman's (1968) model uses a 0.91. Thus, at

the shorter dye wavelength, molecular scattering may be expected to be

relatively more important than particulate scattering when compared with

the relative amounts of scattering at the longer ruby wavelength. This

expected behavior is indeed observed in Fig. 7(a) and confirms the fact

that the enhanced backscattering in the 18- to 25-km region does not

result from an anomalously dense molecular layer (which would give scat-

tering ratios independent of wavelength) but must be of particulate origin.

In addition. the fact that the scattering ratio profiles have the same

shape tends to validate the radiosonde density profile used in the com-

putation of the scattering ratios.

The wavelength-dependence of the particulate backscattering co-

efficient f may be simply related to the particle size distribution
p

n(r) (r is particle radius), provided that the size distribution is of

the form

-(V + 1)
n(r) = KI r (10)
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TRANSMITTER (X = 0.5890 pm, 0130-0419 PDT) AT MENLO
PARK, CALIFORNIA, ON 15-16 MAY 1973

(a) Scattering ratio; (b) Particulate backscattering coefficeint

throughout the optically significant size range. If this is the case,

it can easily be shown [see e.g., Junge 1963, p. 142] that

-Of
f = K ? (11)

p 2

and

= v - 2 . (12)

In these equations, K1 and K2 are constants proportional to the particle

number concentration, and v is a single parameter giving the dependence

of particle number on radius. As can be seen from Fig. 7(b), the
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15 May 1973 observation is inadequate to make an accurate determination

of the wavelength exponent a because the ruby and dye values do not

generally differ from each other by more than the uncertainty of the

respective measurements. Within that uncertainty, however, the wavelength-

dependence of fA shown in Fig. 7(b) is consistent with values of 1 in the

approximate range of -0.5 to 1.0. These correspond to size distribution

exponent values of v = 1.5 to 3, which are consistent with values observed

experimentally [Junge et al., 1961a,b (v - 1.5 to 3)], and also with

values derived from two-threshold particle counters [Hofmann et al., 1973;

Russell et al., 1973b (v = 2.7 ± 0.5)], and values expected on the basis

of theoretical considerations [Friedlander 1961 (v = 1 to 3)]. These

results are encouraging, but primarily they tend to emphasize the need for

somewhat higher precision in the acquisition and analysis of stratospheric

lidar data if useful wavelength-dependencies and size distribution infor-

mation are to be extracted. The development of higher-power dye lasers

makes this greater precision a reasonable possibility. A higher-precision

system should also have a dual-transmitter configuration to permit dye

and ruby profiles to be acquired in rapid and alternating sequence, thus

minimizing ambiguities due to time variations in stratospheric aerosol

structure.

(e) Comparative lidar/direct-sampling experiments

In the present study, three aircraft sampling experiments were con-

ducted over the lidar site at times coincident with, or very close to,

43



lidar observations. The particle concentration data obtained by such

aircraft sampling provided a test of the validity of particulate back-

scattering coefficients derived from lidar data by using the matching

method of analysis, and also provided information on particle size dis-

tribution, shape, and chemical composition for use in converting lidar

backscattering data to other optical and physical parameters. A pre-

vious lidar/direct sampling experiment, the Laramie Comparative Experi-

ment, has been described by Dynatrend (1973), Fernald et al., (1973),

and Melfi et al. (1973).

(i) WB-57F Overflight. On 26 July 1973 a WB-57F aircraft,

specially instrumented for the Climatic Impact Assessment Program, made

in situ measurements at an altitude of 61,000 ± 500 ft (18.7 ± 0.15 km)

MSL over the SRI lidar site. (The stated uncertainties result from the

response characteristics of autopilot operation and altitude-measuring

instrumentation on the aircraft.) A sample of ambient particulate

material was collected using a wing-pod filter sampler provided by

William A. Sedlacek of Los Alamos Scientific Laboratory, University of

California, Los Alamos, New Mexico. This sample was subsequently

returned to the National Center for Atmospheric Research, Boulder,

Colorado, where it was analyzed for chemical composition and mass by

Bruce Grandrud and Alan Lazrus.

The results of the laboratory analysis (Sedlacek, private communi-

cation 1973) are summarized in Table 4. No silicates or other materials
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Table 4

COMPARISON OF LIDAR OBSERVATIONS WITH WB-57F AIRCRAFT MASS SAMPLING MEASUREMENT

Particle Characteristics Ambient Aerosol Characteristics

Method of 2 4 5 6 7 8 9 10

Observation 1973 Time Chemical Density Refractive Assumed Size Particulate Back- Number Mass

Date (PST) Composition (g cm
- 3

) Index Shape Distribution scattering Coefficient Concentration, Concentration,
fp (m-lsr

- 1 
x 10-

9
) N(cm-

3
)
*  

M (g cm
- 3 

x 10
-
14)

Amorphous
WB-57F Aircraft 26 July 0819-0906 Sulfuric acid and 1.63

b  
1.

4 2
c (frozen) or Deirmendjian 1.5 ± 0.

3  7.9 ± 1.5
b

(filter water solution spherical Haze H
sample, (5.8 x 10-14 g (supercooled
18.7 1 0.15 km) cm

- 3 
SO amb- liquid)

ient)a droplets
d

Lidar 23 July 2030-2300 
2.9 ± 0.9

g  
1.5 ± 

0 .5h 7.5 ± 2.3
i

(18.5 - 18.8 kma, 24 July 2100-2342 4.8 ± 0.99 2.4 ± 0.5h 12.5 ± 2.31
S = 0.69 26 July 2210-0030 

3.7 t 0.98 1.9 ± 0.
5
h 9.6 ± 2.31

Note that N is the total number of particles (per unit volume) of all sizes. A photoelectric particle counter would measure only the fraction
NR/N of this total (see Table 3).

aAircraft measurement.

b
Best estimate from aircraft measurement of chemical composition and results of Rosen (1971), and Toon and Pollack (1973).

Inferred from aircraft measurement (Columns 3 and 4) using standard tabulation at 18.3'C.
d
Inferred from aircraft measurement (Columns 3 and 4, plus ambient temperature [-610C], plus room temperature analysis showing no solid
particles larger than instrument resolution of 0.2 pm).
Computed from aircraft measurement (Column 10) using value of m (see Table 3) consistent with Columns 4, 6 and 7.
f
Computed from aircraft measurement (Column 3) using specific gravity from Column 4.

gLidar measurement.

h
Computed from lidar measurement (Column 8) using value of fp (see Table 3) consistent with Columns 3, 5 to 7.

Computed from lidar measirement (Column 8) using value of ip (see Table 3) consistent with Columns 3 to 7.



that are solid at room temperature were detected by a scanning electron

microscope having a resoltuion of 0.2 am. Chemical analysis revealed a

particle composition tat was essentially a solution of sulfuric acid and

water, with negligible amounts of trace elements present. The ambient

mass concentration of sulfate ion (SO ) at the flight altitude was deter-

-14 -3 -14 -3
mined to be (5.8 ± 1 .1 ) X 10 g cm , or (5.9 ± 1.1) X 10 g cm

of pure sulfuric acid. The stated uncertainties (± 1() result from an

estimated 10 percent probable error in sampled air volume and an estimated

15 percent probable error in measured sulfate mass.

The acid/water mass mixing ratio of the solution droplets in the

stratosphere is determined by the ambient relative humidity, data for

which were not available in this experiment. Toon and Pollack (1973)

have recently shown that values of the acid mass fraction between approxi-

mately 40 and 80 percent are possible, and that 75 percent is the most

probable value. This latter value is also in agreement with a previous

determination by Rosen (1971), based on the measured boiling point of

stratospheric particles. We therefore initially adopt an acid/water

mass mixing ratio of 75/25 as the best estimate for the aerosol sampled

by the WB-57F. This estimate implies a total ambient mass concentration

of solution droplets given by

-14 -3 -4 -3
M = (1./0.75) X (5.9 ± 1.1) X 10 g cm = (7.9 ± 1.5) X 10 g cm

(13)
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and a solution mass density (specific gravity) of

-3

P = 1.63 g cm3 (14)

We made lidar observations on the night following the WB-57F over-

flight (26 July) and also on two nights shortly before the flight (23 and

24 July). The resulting vertical profiles of particulate backscattering

coefficient f (z) are shown in Fig. 8. For purposes of comparison, we
p

have assumed that the aircraft filter sample represents an average over

the probable boundaries of the flight altitude (18.7 ± 0.15 km MSL).

Values of f (z) averaged over this interval (z = 18.55 to 18.85 km) are
p

listed in Table 4. [The sources of the stated uncertainties in f are
p

given in Section 3(b).]

To convert the values of f (z = 18.55 to 18.85 km) to unambiguous
p

values of particulate mass concentration, it is necessary to know the

refractive index, shape, and size distribution of the particulates. The

first two of these factors may be inferred from the laboratory analysis

and estimated solution acidity. Standard Tabulations (see, for example,

Table 5) show that for all visible wavelengths the specific gravity given

by Eq. (14) corresponds to a room-temperature refractive index of

m = 1.42 . (15)

Lacking any definite knowledge of the temperature-dependence of the

refractive index, we adopt the value given by Eq. (15) as the best estimate

of the particulate refractive index at ambient stratospheric temperatures

o
(T -60 C). The use of a purely real refractive index is supported by
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particles), X = 0.7 Mm, and refractive index m = 1.42. See text for details.



Table 5

REFRACTIVE INDEX OF SULFURIC ACID-WATER

SOLUTIONS FOR VISIBLE WAVELENGTHS

T P k(nm)
-3(OC) (g cm ) 397 486 589 656

18.3 1.811 1.44883 1.44168 1.43669 1.43444

18.3 1.632 1.43694 1.42967 1.42466 1.42227

18.3 1.221 1.38158 1.37468 1.37009 1.36793

18.3 1.028 1.34938 1.34285 1.33862 1.33663

a recent literature review and experimental study by Neumann (1973),

which showed that aqueous sulfuric acid solutions are not absorptive in

the wavelength region (X 700 nm) of the ruby lidar.

The effects of low stratospheric temperatures and pressures also

pertain to the question of particle shape. If the droplets are in the

liquid phase, they may be taken to be spheres, and thus the freezing

point of the droplets is an important consideration. As discussed by

Toon and Pollack (1973), the freezing curve of Giauque et al., (1960)

indicates that the equilibrium state of concentrated sulfuric acid solu-

tions is solid (frozen) at stratospheric temperatures (i.e., < -500C).

However, it is possible for the droplets to exist as supercooled liquid;

therefore Toon and Pollack conclude that there is insufficient experi-

mental evidence at present to determine the droplet phase conclusively.

This is especially so since trace amounts of nitric acid may be present
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in the sulfuric acid droplets, and this presence would cause a signifi-

cant lowering of the droplet freezing temperature (Castleman 1974). It

should also be noted that the characteristics of particle adherence to

wires in recent stratospheric collection experiments suggest that at

least an outer coating of the particles is liquid (Ferry, private communi-

cation 1974). Moreover, the high viscosity of concentrated sulfuric acid

leads to the expectation that even if the particles are solid, they may

be amorphous, rather than crystalline, in shape (Sedlacek, private

communication 1975). We have therefore adopted a model of spherical

particles in evaluating the electromagnetic scattering properties of

the particles.

The particle size distribution was not measured on the WB-57F over-

flight, and we have therefore adopted a model analytical size distribution

in our analysis. The model that appears most appropriate is the haze

H model of Deirmendjian (1969), for the following reasons: (1) it was

constructed by Deirmendjian (1969, 1972) to be representative of the

stratospheric aerosol measurements of Junge et al. (1961a,b) and Mossop

(1964); (2) it is consistent with the ratios of numbers of particles

larger than 0.3 im and 0.5 pm obtained by photoelectric particle counters

on numerous balloon flights by Hofmann et al. (1972); and (3) when used

with a refractive index between 1.40 and 1.45 it yields a computed

backscatter-to-particle-number ratio that agrees with values measured

in the Laramie Comparative (lidar/balloon) Experiment (Dynatrend 1973).
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These reasons have been demonstrated in more detail by Russell et al.

(1973b), who also show that the model distribution haze L does not

satisfy any of these criteria.

The particle characteristics given above permit the calculation of

a number of parameters that are useful in comparing lidar and direct-

sampling measurements. The parameters include:

- 3
v a mean volume per particle [units:cm ],

m a mean mass per particle [g],

A- 3
B - extinction coefficient per particle per unit volume [m cm ,

A
f a backscattering coefficient per particle per unit volume

[(m-sr)- 1 cm 1,

f a backscattering coefficient per particulate mass per unit

p -1 -1 3
volume E(m-sr) g cm 1.

Computed values of these parameters are listed in Table 3 for a

number of particle characteristics. For the conditions of the WB-57F

overflight, a set of characteristics (i.e., an optical model) which appears

appropriate, is a model of spherical particles with refractive index

m = 1.42, specific gravity 1.63 (75 percent sulfuric acid, 25 percent

water) and size distribution haze H. By using the corresponding value

of f from Table 3 and the relation
p

M = f /f , (16)
P p

we have converted the lidar-measured values of f to the ambient particu-
p

late mass concentrations shown in Column 10 of Table 4. Within the
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uncertainties of the respective measurements, M(filter sample) is seen to

agree with the value of M(lidar) measured on 26 July (the night following

the overflight) and also that measured on 23 July. The difference between

M(filter sample) and M(lidar, 24 July) is slightly greater than the com-

bined 1c uncertainties, and could possibly be due to changing stratospheric

conditions between the night of 24 July and the morning of 26 July.

Equation (16) may be rearranged and used to derive a particulate

backscattering coefficient f (filter sample) from the aircraft mass
p

measurement. The result thus obtained is plotted in Fig. 8, indicating

the relationship between the lidar--measured and aircraft-inferred values.

The agreement shown in Table 4 and Fig. 8 is encouraging, but its

sensitivity to some of the assumptions made in adopting the particulate

optical model remains to be investigated. From Table 3 it can be seen

that values of f [and thus of M(lidar) and f (filter sample)] are
p p

relatively insensitive to changing size distribution. However, for a

given specific gravity, is quite sensitive to assumed refractive

index, and for a given refractive index it is of course quite sensitive

to assumed specific gravity, as is the value of M(filter sample). Both

refractive index and specific gravity are determined by the acidity of

the droplet solution. which, as noted by Toon and Pollack (1973), could

possibly lie between 40 percent and 80 percent, depending on the ambient

relative humidity.
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Therefore we have repeated the lidar/aircraft mass comparison for a

range of assumed acid concentrations. The results are shown in Fig. 9,

where the assumed value of f is that measured by the lidar on 26 July
p

at the aircraft flight altitude. The value of M(filter sample) shows

its expected strong dependence on solution acidity. For M(lidar),

however, the dependence on specific gravity is opposite to that on re-

fractive index, so that the two effects tend to cancel. As a result, for

a droplet composition of aqueous sulfuric acid, the inferred value of

M(lidar) is nearly independent of acid concentration. It is seen that

M(lidar) and M(filter sample) agree within error bars for any assumed

acid mass fraction between 40 percent and 94 percent. Moreover for an

assumed acidity of 60 percent (a not unreasonable value) the agreement

between M(lidar, 26 July) and M(filter sample) is excellent, and both

M(lidar, 23 July) and M(lidar, 24 July) agree with M(filter sample) within

error bars.

This type of agreement lends support to the matching method of lidar

data analysis described in Section 3 and used in the present study,

especially since the error bars on lidar-inferred quantities do not

include any contribution to account for possible particulate content at

the assumed clean level.

(ii) Convair 990 Overflight. On 21 January 1974, a NASA Convair

990 made passes over the SRI lidar site at seven altitudes ranging from

3.1 to 12.2 km. The upper three flight altitudes and times are given

in Table 6 and shown in Fig. 10. Measurements of ambient particle number
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FIGURE 9 DEPENDENCE OF LIDAR- AND AIRCRAFT-INFERRED PARTICULATE
MASS CONCENTRATION ON ASSUMED ACID FRACTION OF
SULFURIC ACID-WATER SOLUTION

The aircraft curve assumes M(H 2 So 4 ) = (5.9 ± 1.1) x 10- 14 g cm - 3 .
The lidar curve assumes fp = (3.7 ± 0.9) x 10 - 9 m- 1 sr- 1 , X = 0.7 gm,
Deirmendjian haze H size distribution. The shaded areas indicate the
estimated uncertainties (±1a) in the respective measurements.

density were made by using an Aitken nucleus counter and a Royco particle

counter provided by Dan Briehl of NASA Lewis Research Center, Cleveland,

Ohio. The results of the Royco particle counter measurements (Briehl,

private communication 1974) are shown in Table 6 for the three upper

levels. Since the particles measured by the Aitken nucleus counter are

too small to be optically significant (i.e., to provide a significant
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Table 6

COMPUTATION OF SCATTERING RATIOS FROM CONVAIR 990 PARTICLE NUMBER DATA

AN (cm3 ambient X 10
- 3  

N.25 f (z) f (z)

Time, z r = (cm-3 m
PDT (km) (0.25-0.35 pm) (0.35-0.70 pm) (0.70-1.50 pm) (1.50-2.50 pm) (> 2.5 4m) Ambient 10

- 3
) (m

- 1 
sr- X 10 ) (m-1 sr-1 10 ) R(z)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

2117-2155 9.5 5.42 3.25 0.667 0.050 0.051 9.44 197 0.08 - 0.76 1.000-1.004

C 2155-2218 10.7 28.60 18.10 2.445 0.012 .0.011 49.27 170 0.42 - 4.0 1.002-1.024

2227-2249 12.2 51.35 24.48 2.538 0.009 0.007 78.38 142 0.68 - 6.3 1.005-1.044

Measured by Royco particle counter on Convair 990. Results at 9.5 km are the average of three convective ten-minute samples. At the other levels they
are the average of two such samples.

tSum of Columns 3-7.

*Computed from Oakland radiosonde profile, 22 January 1974, 0500 PDT.

§Range of values computed from N.25 (Column 8) assuming haze H or haze L size distribution, and refractive index ranging between 1.31and 1.54

1.0 + (Column 10 + Column 9).
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contribution to the lidar return signal), those measurements are not

discussed here.

Figure 10 shows molecular density profiles (presented as percentage

deviations from the midlatitude spring/fall U.S. standard atmosphere)

obtained from the Oakland radiosonde soundings made just before and after

the overflight. As can be seen, the night of 21-22 January was character-

ized by rapid and significant change at the upper flight altitudes. A

layer of dense, cold air moved into the flight region during the 12-hour

period between radiosonde soundings, causing the tropopause to rise from

9.5 to 12.4 km. The rapid decrease in temperature at the upper flight

altitude led to the formation of a cirrus cloud between 0400 and 0430

PDT, after the flight had been completed (see below). (Again, add seven

hours to PDT times to obtain GMT times.)

Because of the changing altitude of the tropopause, it is not clear

whether the Convair 990 actually penetrated into the stratosphere in a

strict sense. However, it is certain that the aircraft was not high

enough to sample particles from the Junge layer of stratospheric particles.

In terms of a lidar/in situ experiment, therefore, the Convair 990 over-

flight did not provide comparative information on the stratospheric

aerosol per se. However, numerous balloon-borne photoelectric particle

counter measurements by the University of Wyoming (see, e.g., Hofmann

et al., 1973) have shown that typically there is a minimum in particle

concentration near the -tropopause. Furthermore, the matching level used
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in our lidar profile analyses usually is also found near the tropopause.

Therefore the Convair 990 comparative experiment primarily provided a

test of the validity of the clean air assumption used in the matching

method of lidar analysis.

We performed this test by computing expected lidar scattering ratios

from the aircraft particle-counting data. This computation requires

information on both particle size distribution and particle refractive

index. Particle size distribution histograms for particles with radius

r > 0.25 tm can be drawn from the data in Table 6. For all three flight

levels these histograms fall in between histograms computed from the

analytical size distributions haze L and haze H of Deirmendjian (1969),

but more closely approximate haze L than haze H, especially for the

lower flight levels (z = 9.5 and 10.7 km). The size distributions, of

course, should not necessarily be expected to approximate haze H (cf.

the preceding sub-section), because the sampled particles were not from

the Junge layer.

The tropospheric nature of the sampled particles also makes their

refractive index uncertain. Reasonably expected values could range

from 1.31 (ice) to 1.54 (silicate), with possibly nonzero imaginary

components. Therefore, we have computed particulate backscattering co-

efficients f for a wide range of refractive indices and size distributions,

including the extremes noted above. The ranges of resulting values, for

the numbers of particles sampled at the three flight levels, are shown

58



in Table 6, along with the corresponding scattering ratios. Fortunately,

as can be seen, the numbers of sampled particles were so small at all

levels that the ambiguity in particle composition and size distribution

produces only moderate ambiguity in computed scattering ratios. Within

the lidar measurement accuracy, the computed scattering ratios at 9.5

and 10.7 km are unity--i.e., the particulate content there is negligible

from the standpoint of lidar scattering ratio measurements.

Lidar observations were made on the night of the Convair 990 over-

flight between 2034 and 2336 PDT and again between 0339 and 0513 PDT.

The observations were made in alternating low- and high-sensitivity modes

as described in Section 2(b). The resulting composite profiles of

scattering ratio, and the times of acquisition of low-altitude (low-

sensitivity) and high-altitude (high-sensitivity) portions are shown in

Fig. 11. The molecular density profile used in computing these ratio

profiles is that given by the 22 January 1974 0500 PDT Oakland radio-

sonde sounding, shown in Fig. 10. Generally speaking, the composite

profiles below 20 km are determined only from the low-sensitivity obser-

vations, and the composite profiles above 20 km are an error-weighted

average of the indicated low- and high-sensitivity profiles. The low-

altitude cutoff of the low-sensitivity runs was gradually extended

downward, from 13.0 to 8.0 km, as the night progressed.

As can be seen from Fig. 11, the structure of the stratospheric

aerosol layer between 15 and 27 km remained quite stable throughout the
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observation period. This type of stability is typical of our observations

(see, e.g., Russell et al., 1973a). However, below 13 km continually

changing conditions are evident, notably in the form of a peak in scattering

ratio that grows in both magnitude and altitude as the night progresses.

Such a peak could result from an increase in either atmospheric density

or particulate content, and it is probable that in this case both mech-

anisms were operative. For example, the radiosonde soundings (cf., Fig.

10) show that the molecular density at 12.5 km increased by at least 9

percent between soundings, while it is clear from the late lidar obser-

vations that a layer of cirrus formed after 0400 PDT.

This type of rapid and significant change in molecular density between

afternoon and morning radiosonde soundings is not typical of conditions

during the 1972-74 series of lidar observations, but it introduces an

ambiguity into interpretation of scattering ratios near the tropopause

for this particular observation. Nevertheless, the following comparison

between lidar-measured and aircraft-inferred scattering ratios can be

made. The aircraft-inferred scattering ratios for the two upper.flight

levels, as given in Table 6, are plotted in Fig. 11 as dark rectangles

at the flight altitude. As can be seen, only one aircraft measurement

(that at 12.2 km) was actually made concurrent with a lidar observation

at its altitude. For that case there is good agreement between the

lidar-measured scattering ratio and the range of values computed from

the aircraft data. The aircraft measurement at 10.7 km was made almost
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entirely before the lidar observations were extended downward to that

level. As can be seen, the first lidar profile to extend down to 10.7 km

gives a scattering ratio that exceeds the range of aircraft-inferred

values by more than one error bar. However, given the difference in

time between the two observations, the changes in atmospheric density

(and possibly particulate content) that were occurring, and the possibility

that the peak in lidar scattering ratio results from atmospheric density

effects, the agreement is as good as can be expected.

Because of rapidly changing atmospheric density near the tropopause

and the low upper limit on flight altitudes, therefore, the 21 January

1974 Convair 990 overflight did not provide an optimal comparative lidar/

direct-sampling experiment. It did, however, provide additional support

for the validity of the matching method of lidar profile analysis. since

a rather extensive clean layer was found by the aircraft. and the altitude

of this layer corresponded to the altitude located by the standard matching

analysis method (see Section 3a). It should of course be emphasized

that the results obtained on 21 January 1974 strictly apply only to that

date, and do not necessarily imply that there is a clean (f /f 0.01)
p m

layer near the tropopause on all nights in all seasons. More extensive

data obtained by the University of Wyoming (see, e.g., Hofmann et al.,

1973ab), have shown fluctuating particle numbers with a possible seasonal

dependence at the concentration minimum near the tropopause. Further

analysis of the balloon data to specifically determine their implications
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for lidar-measured scattering ratios is recommended. Moreover, the

possible presence of optically significant numbers of particles 
that are

smaller than the detection thresholds (r = 0.25 and 0.15 tm, respectively)

of the Royco and Wyoming photoelectric particle counters should also be

investigated. The presence of such particles has been indicated in the

past, for example by the measurements of de Bary and Rossler (1966).

(iii) U-2 Overflight. On the night of 18 March 1974, a U-2 air-

craft from NASA Ames Research Center (ARC) in Mountain View, California,

made passes over the SRI lidar site at altitudes of 19.5 and 20.1 km.

The aircraft carried a particle-collection device provided by Guy Ferry

of ARC. Particles collected at both flight altitudes were subsequently

returned to ARC where they were analyzed using a scanning electron micro-

scope, as described by Farlow et al. (1973). This type of analysis pro-

vides information on particle size distribution and also, through X-ray

emission analysis, on particle elemental composition.

Lidar observations were also made on the night of the U-2 flight,

and the resulting profiles of scattering ratio and particulate back-

scattering coefficient are included in Figs. 3 and 4. Comparative

analysis of the U-2 and lidar data is not yet complete, and the results

will be described in a future publication.
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5. DISCUSSION OF ATMOSPHERIC OBSERVATIONS

The profiles of scattering ratio obtained in this study show the

Junge (or "20-km") layer of particles to be a quasi-permanent feature of

the lower stratosphere over Menlo Park, California (37.40N, 122.20W), from

October 1972 to March 1974. This major peak of scattering excess is ap-

parent in all of our observations, although it has displayed significant

variations in both magnitude and shape. With two exceptions, the maxi-

mum value of the scattering ratio has ranged between 1.07 and 1.22. In

one exceptional case (11 September 1973) the layer was very broad, and

the maximum scattering ratio in the main peak was only 1.05. Even in

this case, the presence of a particulate excess in stratospheric back-

scattering was evident beyond the combined observational uncertainties.

The observed scattering ratios show that in general the maximum par-

ticulate contribution to stratospheric backscattering at the ruby wave-

length (X = 694.3 nm) was only about 10 to 15 percent of the molecular

contribution. This may be compared with particulate contributions that

were approximately 60 to 120 percent of the molecular backscattering

contribution during the 1964-65 observations of Grams and Fiocco (1967).

The lidar observations thus show a decline in particulate backscattering

by nearly an order of magnitude over the ten-year period. This decline

has been previously noted by many other investigators, who have attributed
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it to the gradual removal of particles that resulted from the eruption

of the volcano Agung on Bali in March 1963. More detailed and extensive

data,. including other lidar observations (summarized by Fox et al., 1973),

the twilight photometry of Volz (1969, 1970, 1972, 1973), and the balloon-

borne particle counting observations of the University of Wyoming group

(e.g., Hofmann et al., 1972, 1973) have shown that numerous short-term

fluctuations are imposed on this general decline. Careful measurements

of sulfate concentration and sulfur isotope ratios by Castleman et al.

(1973a,b), have shown that at least part of these fluctuations is due to

major volcanic eruptions subsequent to the Agung event, notably Taal

(1965), Awu (1966), and Fernandina (1968).

Above the major Junge layer, average particulate backscattering is

smaller, but its relative variations are considerably larger, and may

occur in response to factors other than volcanic activity. For example,

in our earliest observations (23 October 1972 to 11 December 1973) there

appears to be a well-defined particulate layer between 24 and 27 km that

decreased in altitude with time, and finally merged with the main layer

or disappeared by January 1973. Lidar observations in Japan by Hirono

et al. (1972) also indicated large particulate scattering above the

main layer at this time, and those observers speculated that its presence

could be due to an influx of dust from the comet Giacobini-Zinner. Maxi-

mum scattering ratios observed by the Japanese group greatly exceeded any

ever observed in the present study.
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Following the autumn 1972 appearance of particulate content between

25 and 30 km, January 1973 was characterized by a complete absence of

particulate backscattering in that region, and by a major Junge peak 
that

was more sharply-defined (i.e., narrow) than in most other observations.

The coincidence of this behavior with the time of a sudden stratospheric

warming has been noted above and probably bears further study.

After January 1973 significant particulate backscattering at 30 km

was noted intermittently throughout the remainder of the study. Scat-

tering ratio profiles were frequently similar to the average profiles of

Fox et al. (1973), in exhibiting a very broad maximum that did not appre-

ciably decline near 30 km. Similar structure has also been noted by

Volz (1971).

In our later observations, for which profiles of scattering ratio

were obtained both above and below the tropopause, a relative minimum in

scattering ratio was invariably observed near, but not necessarily at,

the tropopause. A similar minimum in particle number per microgram of

air has also been consistently observed by the University of Wyoming bal-

loon soundings.

After 4 January 1974 the altitude of the maximum scattering ratio in

all our observations ranged between 21 and 23 km. Recent lidar and bal-

loon observations in Wyoming (420N) and Colorado (40 0N)--Dynatrend 1973--

have shown the maximum to be somewhat lower, at about 18 km. In the past,

latitudinal variations in the altitude of the main aerosol peak have been
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noted to follow similar latitudinal changes in tropopause height (Grams

and Fiocco 1967), and thus similarly, the present longitudinal difference

between California coastal and continental layer heights may be at least

partially explained by tropopause height differences. However, seasonal-

mean tropopause heights at Menlo Park and Wyoming-Colorado do not appear

to differ by more than 2 or 3 km, and thus other mechanisms, for example

in stratospheric zonal and vertical flow, should be investigated to ex-

plain this difference in peak altitudes.

We have also inspected our data for temporal correlations between

tropopause height and that of the peak and centroid in scattering ratio.

In general, if such a correlation exists, it is very weak. That is. the

altitude of the main peak does not appear to strongly follow variations

in the tropopause altitude at Menlo Park. This lack of correlation is

in accord with previous results obtained by direct sampling (Junge and

Manson 1961) and lidar observations (Grams and Fiocco 1967) in Massachu-

setts.

Because of increasing atmospheric density with decreasing height,

particulate backscattering below the peak in scattering ratio R usually

makes a major contribution to the vertically-integrated particulate back-

scattering (ft (z)dz = ffm(z) [R(z) - 1] dz) above the tropopause.

This fact, coupled with the fact that temporal variations in aerosol

layer altitudes do not tend to follow temporal variations in tropopause

height, means that a rising tropopause frequently results in a decrease
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in integrated particulate content above the tropopause. A resulting

negative correlation between tropopause height and integrated particle

number above the tropopause has been noted by Hofmann et al. (1973),

and appears also to be present in our data after May 1973, when observa-

tions consistently extended below the tropopause.

The particulate optical thicknesses ATp obtained from our lidar ob-

servations by using a model value for the backscattering phase function

P() are nearly an order of magnitude smaller than the values of the

Elterman (1968) model. Since the model values are based on searchlight

measurements made in 1964 and 1965, when effects of the Agung eruption

were still significant, this discrepancy is not surprising, and in fact

agrees rather well with the 1964-74 trend in lidar backscattering ratios

mentioned above. More difficult to explain is the fact that the present

lidar-determined optical thicknesses are also a factor of four to ten

smaller than those determined by searchlight measurements made in October

and November of 1970 (Elterman et al., 1973).

One possible reason for this discrepancy is of course the choice of

backscattering phase function used in converting our backscattering

measurements to extinction values. The value [P()/4n = 0.0132] that we

have used is appropriate if the optical properties of the present strato-

spheric particles are similar to those of homogeneous spheres of 75 per-

cent concentrated sulfuric acid, and if their size distribution approxi-

mates the Deirmendjian haze H distribution. As shown in Section 4(e),
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such an optical model appears to be consistent with a number of recent

stratospheric measurements, but its validity has not been conclusively

demonstrated, especially over time periods of several years and altitude

ranges that include the bulk of the Junge layer. It is important to note,

however, that agreement between the present lidar measurements and the

1970 searchlight measurements requires a backscattering phase function

that is a factor of four to ten smaller than the model value we have

used. Such a small value for the backscattering phase function does not

occur for any of the wide range of optical models shown in Table 3, all

of which assume spherical particles of nonabsorbing material. Thus agree-

ment between the present lidar measurements and the 1970 searchlight

measurements evidently requires that the optically significant strato-

spheric particles be highly aspherical (Holland and Gagne 1970) or

absorptive in the visible (Grams et al., 1974), or both. While more

measurements are required to conclusively assess this possibility, it

does not appear to be consistent with current measurements.

Before leaving the question of the backscattering phase function,

we note that the conversion of raw searchlight scattering measurements

to values of optical thickness also requires the assumption of a scat-

tering phase function in the angular region 6 800 to 1100 (Elterman

and Campbell 1964, Elterman 1966). The phase function actually used in

reducing the 1964-65 and 1970 searchlight measurements (Reeger and

Siedentopf 1946) has a backscattering value that is larger than our
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assumed value, and would thus produce even smaller lidar-derived optical

depths.

A more likely reason for the discrepancy between the lidar- and the

searchlight-derived optical thicknesses is the different time periods at

which the measurements were made. Elterman (1973) states that the 1970

measurements are representative of a background nonvolcanic stratosphere,

but other measurements indicate that particulate content has continued

to decline since that time. Specifically we note the time series of

lidar observations summarized by Fox et al. (1973), and the twilight

scattering measurements of Volz (1970, 1972, 1973). The latter measure-

ments indicated a temporary increase in particulate content (over Boston,

Massachusetts) in late 1970 (including October and November), and a gen-

eral decline thereafter, interrupted only by a brief but major increase

in October 1971.

However, the fact that the searchlight measurements show only a

17 percent decline in stratospheric particulate optical depth between

1964-65 and 1970 makes it appear worthwhile to investigate other possible

differences between the lidar and searchlight measurements. A factor

that bears mention is the normalization of the lidar and searchlight

measurements. Both techniques obtain particulate scattering values by

referencing measured intensities to those expected from a purely gaseous

atmosphere. The searchlight measurements provide a scattering profile

that extends upward from an altitude of only a few kilometers. The 1970
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profile of turbidity [t(z) = 5p(Z)/Pm(Z)] obtained in this manner ex-

ceeds 0.5 for all altitudes between 10 and 27 km. Thus, the 1970 search-

light measurements imply that there was no clean level in the strato-

sphere below 27 km (the upper limit of measurements). In fact, at 10 km

the searchlight-derived turbidity [t(10) = 0.9)] is two-thirds of the

value [t(16) = 1.5)] at the peak of the aerosol layer. This is very

different from the lidar measurements, where the backscattering mixing

ratio, R(z) - 1, at 10 km is generally negligible compared to its value

at the peak of the layer. Since the searchlight measurements cover a

much larger altitude range than do the lidar measurements, this immediately

raises the possibility that the lidar measurements have neglected a

sizeable particulate contribution at the normalization level where R is

assumed to equal unity. However, unless there is a very large (optically

significant) number of small particles with radius --0.25 mu (which would

not be seen by an optical particle counter), this possibility is not con-

sistent with the essentially clean layer found by the Convair 990 on 21

January 1974 [see Section 4(e)(ii)], nor with the number mixing ratios

(particle number per microgram of air) observed by the University of

Wyoming balloon flights, where the minimum value (near the tropopause)

is invariably a factor of five, and typically a factor of ten or more,

less than the peak value. These interesting discrepancies between the

lidar and searchlight measurements bear further investigation, ideally

including joint comparative measurements involving direct sensors as well.
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After June 1973, when the lidar measurements consistently extended

as low as the tropopause and below, the measured particulate optical

thicknesses (cf. Fig. 6) do not show any overall increasing or decreasing

trend with time. This may possibly indicate that a background level in

stratospheric particulate content was achieved during this time. However,

the observation period of the apparently stable data is only eight months.

Extended observations will be required to ascertain whether this data

sample is representative.
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6. NOTES AND RECOMMENDATIONS ON THE LIDAR

OBSERVATIONAL TECHNIQUE

As a remote sensing device, the lidar naturally suffers from several

deficiencies when compared to in situ devices for measuring stratospheric

particulate content. It cannot provide information on particle chemical

composition, or. if restricted to single-wavelength operation, on particle

size distribution. Moreover, the optical quantities that it measures

cannot be unambiguously converted to particle number or mass without

auxiliary information on particle composition, shape, and size distribu-

tion. Nevertheless, the lidar has several advantages over direct sensors

that make it a useful adjunct to direct (and other remote) sensors in

stratospheric studies. These advantages include its ability to rapidly

and continuously observe stratospheric regions of large vertical extent,

the fact that it does not alter the quantities that it is observing, and

its significantly lower cost per observation, which permits broad coverage

in time and possible network operation. Lidar observations are thus val-

uable sources of information on the stratospheric aerosol, and are of

especial value in extending and complementing available in situ measure-

ments, as shown by the discussion which follows.

In the absence of auxiliary data to make conversions, the profiles

of scattering ratio and particulate backscattering coefficient directly

provided by the lidar immediately reveal the presence, altitude-dependence,
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backscattering strength, and variability (in space and time) of strato-

spheric aerosol layers. These profiles have been used to document the

general decline in stratospheric particulate content between 1964 and

1974. In the present study they have also been used to study the

changing character of the stratospheric aerosol in relation to tropopause

heights, stratospheric winds, and a sudden stratospheric warming. These

studies illustrate the value of the lidar in investigations that require

data with a coverage in time and altitude that would be impossible or ex-

tremely expensive to achieve with direct sensors. In the future this

capability could be further exploited by operating lidars in a monitoring

fashion, utilizing their measurements to select optimum times and altitudes

for more detailed direct sampling studies, for example during times of

unusual or otherwise interesting behavior of the lidar profiles.

It should also be pointed out that the nature of the fundamental

lidar data profiles makes them potentially useful in future modeling

studies. A fundamental result of dynamic, radiative, and photochemical

models of the stratosphere is a set of vertical profiles, or two-

dimensional contour plots, of the mixing ratio of the modeled constituent

(see, e.g., Rao 1973; Rao and Christie 1973). Model development and veri-

fication studies therefore require measurements of such mixing ratio pro-

files or contour plots, preferably obtained by a single measurement

method, and at a single time or averaged over a suitable time period.

Lidar-measured profiles of backscattering mixing ratio, R(z) - 1,
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would thus be well-suited to the development of aerosol formation and

transport models. In the past such models have not been attempted be-

cause of the complexity of aerosol formation processes and our limited

understanding of them. However, as pointed out by Castleman (1974),

stratospheric aerosol chemistry appears to be a fruitful area for future

research, and the development of crude models may not be far in the fu-

ture. Similarly, the shape of lidar scattering ratio profiles could also

possibly be used to determine vertical eddy diffusion coefficients in the

stratosphere (see, e.g., Wofsy and McElroy 1973; Clemesha and Nakamura

1972).

In the types of study just mentioned, information is obtained

directly from the fundamental lidar data, i.e., vertical profiles of the

scattering ratio and particulate backscattering coefficient. The accuracy

of these profiles has been supported by several recent lidar/direct-sensing

comparisons, including the Laramie Comparative Experiment (Dynatrend 1973;

Fernald et al., 1973; and Melfi et al., 1973) and the WB-57F and Convair

990 overflights described in Section 4(e). Moreover, the simultaneous

data on particle physical, chemicalY and light-scattering characteristics

obtained in these comparative experiments have helped to define the range

of possible conversion factors [f , fp, P(n)] to be used in converting

lidar measurements to particle mass, number density, and optical thick-

ness. Continuing direct-sampling studies, which more accurately determine

the nature and variability of the stratospheric particles, should lead to
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a more accurate and reliable definition of these conversion factors. If

the variability of these conversion factors is shown to be small, then

eventually it will be possible to obtain reliable inferences of the mass,

number density, and optical thickness of the stratospheric aerosol from

lidar measurements on a regular basis. This is not to say that such con-

version factors, once determined. would not change over long time periods

(years or decades) or in response to obvious external influences, such

as volcanic eruptions or aircraft operations. Direct-sampling measure-

ments could provide periodic "calibrations" of the conversion factors

while a network of lidars could be used to -perform routine monitoring.

In the present study, sequential observations with ruby and dye

lasers showed a wavelength-dependence of stratospheric scattering that

is consistent with the presence of particles having a size distribution

in agreement with previous experimental and theoretical studies. Future

continuation of such multiple-wavelength observations is recommended,

using more powerful dye lasers to provide improved accuracy. Such studies

not only would provide information on particle size distributions, but

also could be used to separate the effects of particle concentration and

anomalous molecular density variations on measured scattering ratio pro-

files. As shown by the data of 21-22 January 1974 [Section 4(e)(iii)],

such occasional variations near the tropopause may confuse the interpreta-

tion of lidar profiles measured between radiosonde soundings, especially
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when particulate concentrations are small, as they have been for the

past several years.

A more direct resolution of the effects of molecular density varia-

tions on lidar-measured scattering ratio profiles could be provided by

concurrent lidar measurements of the.Raman-scattering profile of nitrogen

molecular density. Such measurements, which have been conducted in the

troposphere for several years, were recently extended into the strato-

sphere (up to -45 km) by Garvey and Kent (1974). If such measurements

can be refined to a relative accuracy of one or two percent by using in-

creased laser power and receiver area, they would permit the acquisition

of accurate scattering ratio profiles without the need for concurrent

radiosonde ascents, even at times of rapidly changing molecular density

near the tropopause. The development of such coordinated Ramam/elastic

scattering stratospheric lidar systems is therefore to be encouraged.
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